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Invitation

A new theoretical concept which, once formulated, naturally emerges in many related

contexts, deserves further study. Even more so, if it makes us view well-established theories

in a novel way, and meaningfully points beyond standard theory.

Area metrics, we argue in this paper, are such an emerging notion in fundamental

physics. An area metric may be defined as a fourth rank tensor field which allows to assign

a measure to two-dimensional tangent areas, in close analogy to the way a metric assigns

a measure to tangent vectors. In more than three dimensions, area metric geometry is a

true generalization of metric geometry; although every metric induces an area metric, not

every area metric comes from an underlying metric. The mathematical constructions, and

physical conclusions, of the present paper are then based on a single principle:

Spacetime is an area metric manifold.

We will be concerned with justifying this rather bold idea by a detailed construction of

the geometry of area metric manifolds, followed by providing an appropriate theory of

gravity, which finally culminates in an application of our ideas to cosmology. In the highly

symmetric cosmological area metric spacetimes, we can compare our results easily to those

of Einstein gravity. We obtain the interesting result that the simplest type of area metric

cosmology, namely a universe filled with non-interacting string matter, may be solved

exactly and is able to explain the observed [1, 2] very small late-time acceleration of our

Universe, see the figure on page 32, without introducing any notion of dark energy, nor by

invoking fine-tuning arguments.

It may come as a surprise, but standard physical theory itself predicts the departure

from metric to true area metric manifolds. More precisely, the quantization of classical

theories based on metric geometry generates, in a number of interesting cases, area metric

geometries: back-reacting photons in quantum electrodynamics effectively propagate in

an area metric background [3]; the massless states of quantum string theory give rise

to the Neveu-Schwarz two-form potential and dilaton besides the graviton, producing a

generalized geometry which may be neatly absorbed into an area metric [4]; the low energy

action for D-branes [5 – 8] is a true area metric volume integral [4]; canonical quantization

of gravity à la Ashtekar [9, 10] naturally leads to an area operator [11], such that the

classical limit of the underlying spin network structure is also likely a generic area metric

manifold, rather than a metric one.

The emerging picture is that area metric manifolds are generalized geometries. In the

case of string theory, one may even reverse the argument by observing that the geometry

of an area metric background forces one to consider strings rather than point particles [12].

In the present paper this plays a role in our discussion of fluids in area cosmology; fluids on

area metric spacetime cannot consist of particles, but must feature strings as the minimal

mechanical objects, which leads us to develop the notion of a string fluid.

Generalized geometries begin to play an increasingly important role also in mainstream

string theory, despite the fact that one initial starting point for its formulation is a metric

target space manifold. Non-geometric backgrounds in string theory, meaning backgrounds
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that do not admit a metric geometry, for instance emerge in flux compactifications on

which one acts with T-dualities or in mirror symmetry [13 – 16]. They also appear in com-

pactifications with duality twists, which in some cases have been shown to be equivalent to

asymmetric orbifolds [17 – 19]. Generalized geometries built to understand these situations

have been originally proposed by Hitchin [20, 21] and, the T-fold idea, by Hull [22, 23].

These have found a number of applications [24 – 30], one recent example discusses the

stabilization of all moduli through fluxes in a specific non-geometric background [31].

Maybe the most striking example of a classical theory, where area metrics play a

natural role, is gauge theory in general, and Maxwell electrodynamics in particular. Given

that electrodynamics is the historical birth place of the concept of a spacetime metric,

this is certainly noteworthy. It is known that electrodynamics may be formulated on any

d-dimensional smooth manifold without even introducing the concept of a metric [32 – 34].

The idea of this so-called pre-metric approach goes back to a paper by Peres [35], and is

based on the observation that charges, and in certain situations, magnetic flux lines can

be counted, which is nicely explained in [33]. Hence one may define the notions of a field

strength two-form F and an electromagnetic induction (d − 2)-form H. The equations

of vacuum electrodynamics are then given by dF = 0 and dH = 0. The induction two-

tensor H dual to H must be related to the field strength F by some constitutive relation in

order to close the system of equations. While Peres originally took this to be a definition

of the metric, Hehl et al. [33] generalized this to an arbitrary linear relation H = χF

described by a tensor χ of fourth rank, and investigated which conditions imply light

propagation along a Lorentzian lightcone. Such general relations between the field strength

and the induction are known from the description of electrodynamics in continuous media;

the lensing of light rays in some materials cannot be described by geodesics in a metric

background. It is therefore not too daring to suspect that gravitational lensing may be

equally rich, which amounts to the assumption that spacetime is an area metric manifold

— our central assumption in this paper.

Of course, neither the most extensive list of known phenomena, nor the most suggestive

hints for generalizations alone will be able to justify our proposal to consider spacetime

an area metric manifold. However, the area metric gravity theory developed in this paper

seems a particularly worthwile testbed for our hypothesis; this is not least due to the

fact that we do not introduce any new parameter into the theory. In this sense, it is

not a deformation of Einstein-Hilbert gravity (as every alternative action based on metric

geometry necessarily is), but rather an extension in which the metric Ricci scalar is replaced

by its area metric analogue. The prediction of an accelerated expansion of our Universe

at late times, without any additional assumptions or scales being put in by hand, should

count as a promising indication in favour of the idea of area metric spacetime.

This paper is divided into two largely self-contained parts. Part One (sections 1–7)

develops the foundations of area metric geometry in detail. Its practical results, however,

are concisely summarized in the first section of Part Two (sections 8-14) where the area

metric version of Einstein-Hilbert gravity is formulated in general, and then applied to

area metric cosmology. A more detailed outline of the individual sections of the paper is

given at the beginning of each of the two parts. We conclude the paper with a discussion
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of our results and point out future directions. Appendix A lists our conventions, while

appendices B and C respectively derive the general equations of motion of four-dimensional

area metric gravity, and those simplified for the almost metric case.

Part one: area metric geometry

This first purely mathematical part of the paper may be skipped at first reading. Its

practically relevant results are concisely summarized at the beginning of Part Two, so

that the reader mainly interested in the application of area metric geometry to gravity

and cosmology may fast-forward to the second part, and come back later to the in-depth

treatment of area metric geometry presented here.

The precise definition of area metrics, densities and volume forms is given in section 1,

before the non-linear structure of the space of oriented areas is briefly discussed in section 2.

The ensuing construction of area metric geometry is canonical in the sense that it does

not rely on additional structure beyond area metric data [36]. A central issue, namely

the extraction of some effective metric from an area metric, is resolved in three steps:

identification of the Fresnel tensor associated with an area metric in section 3, construction

of a family of pre-metrics from the Fresnel tensor in section 4, and finally selection of a

unique, non-degenerate member of that family in section 5. The aside on area metric

symmetries in section 6 prepares our discussion of cosmology later on. From a practical

point of view, the most important result of this first part of the paper is the construction of

area metric curvature tensors which are downward compatible to their metric counterparts,

in section 7.

1. Area metric manifolds

Knowing how to measure lengths and angles, one knows how to measure areas. More

precisely, if (M,g) is a metric manifold, one may define the tensor

Cg(X,Y,A,B) = g(X,A)g(Y,B) − g(X,B)g(Y,A) (1.1)

that measures the squared area of a parallelogram spanned by vectors (X,Y ) as

Cg(X,Y,X, Y ). We will call Cg the area metric induced from the metric g.

The basic idea of area metric geometry consists in promoting area metrics to a structure

in their own right, independent of whether there is some underlying metric or not. To

achieve this generalization, we simply introduce the area metric by keeping some of the

salient algebraic properties of the metric-induced area metrics (1.1). Formally, we define

an area metric manifold (M,G) as a smooth d-dimensional manifold M equipped with a

fourth-rank covariant tensor field G that satisfies the following symmetry and invertibility

properties at each point of the manifold:

(i) G(X,Y,A,B) = G(A,B,X, Y ) for all vector fields X,Y,A,B in TM ,

(ii) G(X,Y,A,B) = −G(Y,X,A,B) for all vector fields X,Y,A,B in TM ,
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(iii) G : Λ2TM → Λ2T ∗M , defined as G(Ω)(Σ) = G(Ω,Σ) by continuation, is invertible.

Here Λ2TpM denotes the space of all contravariant antisymmetric tensors of rank two; for

our conventions concerning components of Λ2TM tensors see appendix A. We will see at

the end of section 3 that in three dimensions every area metric is metric-induced; from four

dimensions onwards, however, there exist area metrics that cannot be induced from any

metric.

In addition to the symmetries (i) and (ii) which we included in our definition, a metric-

induced area metric (1.1) features a third symmetry, namely cyclicity:

C(A,X, Y,Z) + C(A,Y,Z,X) + C(A,Z,X, Y ) = 0 for all A,X, Y,Z in TM . (1.2)

We emphasize that we do not impose cyclicity as a property of generic area metrics. In

fact, we will see shortly that non-cyclicity plays a central role in two related problems: in

the extraction of metric information from an area metric and in the construction of area

metric compatible connections. The price to pay for non-cylicity is that the area metric

tensor G is algebraically reducible. More precisely, any area metric decomposes uniquely

into a cyclic area metric and a four-form, which are both irreducible. It will turn out to be

advantageous for technical reasons to consider such a decomposition for the inverse area

metric,

Gabcd = Cabcd + F [abcd] . (1.3)

In this context note that the cyclic components C and the four-form components F of the

inverse area metric generically mix under inversion; in other words, the cyclic part of the

inverse area metric is not simply the inverse of the cyclic part of the area metric.

An area metric G naturally gives rise to the scalar density |Det G|1/(2d−2) of weight +1,

where the capitalized determinant Det is understood to be taken over the square matrix

of dimension d(d − 1)/2 representing the map G : Λ2TM × Λ2TM → R. The correct

transformation behaviour under diffeomorphisms is easily seen by direct calculation, noting

that for any square matrix T of dimension d we have

Det T [a1
b1T

a2]
b2 = (det T a

b)
d−1 , (1.4)

where the determinant det denotes the standard determinant. Hence any area metric

manifold is naturally equipped with a volume form ωG, whose components in some basis

are given by

ωG a1...ad
= |DetG|1/(2d−2)εa1...ad

, (1.5)

where ε is the Levi-Civita tensor density normalized such that ε1...d = 1.

Now that we have given a precise definition of area metric manifolds, we should mention

some relations to the mathematical literature. The idea to base geometry on some measure

of area goes back to work by Cartan [38], and has been generalized under the name of ‘areal

spaces’, see [39 – 43] and references therein, to geometries based on reparametrization-

invariant integrals, i.e., to any given volume measure. Although these geometries are

more general than our physically motivated area measure, this does not mean that we will

simply reproduce, or specialize, known mathematics in this paper. In fact, it is precisely
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our tensorial approach that allows us, in a novel way, to construct an effective metric and

connections on the embedding bundle of areas. Moreover the physical motivation behind

our construction leads to a successful application to gravity theory.

2. Area bundles

At first sight, it seems that an area metric assigns a measure to parallelograms. But

actually, an area metric G assigns equal area measure to any two co-planar parallelograms

(X,Y ) and (X̃, Ỹ ) in TpM ⊕ TpM that are related by an SL(2, R) basis transformation.

To see this, let X̃ = aX + bY and Ỹ = cX + dY with ad − bc = 1; then

G(X̃, Ỹ , X̃, Ỹ ) = (ad − bc)2G(X,Y,X, Y ) . (2.1)

The equivalence class of all parallelograms that are SL(2, R)-related to some representative

parallelogram (X,Y ) is algebraically neatly realized as the wedge product X ∧ Y , since

X̃ ∧ Ỹ = (ad − bc)X ∧ Y . (2.2)

The quotient space of all parallelograms by this SL(2, R) identification will be denoted by

A2TpM , and its elements are the oriented areas over TpM . Similarly, we denote the bundle

of oriented areas over M by A2TM .

Whereas parallelograms constitute a vector space TpM ⊕ TpM , the oriented areas

A2TpM at some point p ∈ M cannot carry a vector space structure. To see this note the

following: while X ∧ Y clearly is an element of the vector space Λ2TpM , a generic vector

Ω ∈ Λ2TpM decomposes into a finite sum of such wedge-products, rather than being a

single wedge-product. A useful necessary and sufficient criterion for Ω to be a simple

wedge product, and hence an oriented area, is

Ω ∧ Ω = 0 , (2.3)

in which case Ω is called simple. Thus the space of oriented areas A2TpM is a subset of the

vector space Λ2TpM defined by the vanishing of the four-tensor Ω∧Ω. Since this condition

is quadratic in Ω, the set A2TpM is recognized as an affine variety in Λ2TpM . Hence the

bundle A2TM fails to be a vector bundle. While this does not prevent the construction of

a connection, from some connection on the underlying principal bundle, it is not possible

to define a covariant derivative on A2TM . But it is possible to define a covariant derivative

on the vector bundle Λ2TM , into which A2TM is embedded, and we will do so in section 7.

When discussing strings and string fluids in section 12, we will also need to address in-

tegrability issues, i.e., under which circumstances a distribution of oriented areas is tangent

to some underlying two-surface.

3. Abelian gauge fields and the Fresnel tensor

The physical postulate put forward in this paper is that physical spacetime is an area

metric manifold (M,G), rather than a metric manifold. This immediately prompts the
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question of whether a generic area metric may give rise to some effective metric on the

manifold M . The latter will play a significant role in the construction of an area metric

curvature scalar which is downward compatible to the metric Ricci scalar, in section 7.

With the aim of constructing an effective metric in mind, it turns out to be ex-

traordinarily instructive to probe the geometric structure of an area metric manifold by

abelian gauge theory. In particular this allows us to study wave propagation, which in the

geometric-optical limit gives insight into the geometry of rays. In the metric-induced case,

the ray surfaces reduce to the familiar null cones. In our more general setting, the Fresnel

tensor describes the geometry of rays, and its derivation presents the first step towards the

extraction of metric information from the underlying area metric manifold, which will be

completed in sections 4 and 5.

Consider the following action for a one-form potential A with field strength F = dA

on an area metric manifold of dimension d ≥ 3:

−1

2

∫

M
ωG G−1(F,F ) =

∫

M
ωG LG(F ) . (3.1)

The equations of motion, derived by variation with respect to A, are simply given by the

Bianchi identity dF = 0 and by dH = 0 in terms of the dual electromagnetic induction H,

which is a (d − 2)-form on M with components

Ha1...ad−2
= ωG a1...ad−2mn

∂LG(F )

∂Fmn
. (3.2)

To obtain geometric information from these equations, we study the geometric-optical

limit. In this limit one considers waves as propagating discontinuities in the derivatives of

the fields F and of the electromagnetic induction (d− 2)-form H along a wavefront surface

described by the level lines of some scalar function Ψ on M . The rays of the wavefront are

then given by the gradient p = dΨ. Extending an insightful argument of Hehl, Obukhov

and Rubilar [33, 34], where a detailed derivation may be found, to arbitrary dimension d,

we find that the wavefront gradients must obey the Fresnel equation

G̃a1...a2(d−2)pa1 . . . pa2(d−2)
= 0 , (3.3)

where G̃ is the totally symmetric tensor density of weight −2 given by

G̃a1...a2(d−2) = −(d − 1)!

4
εii1...id−1

εj1...jd−1jC
ii1j1(a1Ca2|i2j2|a3 . . . Ca2(d−3)|id−2jd−2|a2d−5 (3.4)

×Ca2(d−2))id−1jd−1j ,

with C being the cyclic part of the inverse area metric G−1 as in (1.3). As explained

in appendix A we use the convention that the summation over numbered anti -symmetric

indices is ordered, i.e., i1 < i2 < · · · < id−1 and similarly for the jk.

It is a remarkable fact that, in the geometric-optical limit, the propagation of wave

fronts is determined entirely in terms of the cyclic part of the inverse area metric, due

to (3.4). It will be convenient to cast the information encoded in the density G̃ into the
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form of a tensor G. In order to not introduce non-cyclic information into this tensor, we

are led to de-densitize G̃ according to

Ga1...a2(d−2) = |Det C|−1/(d−1)G̃a1...a2(d−2) . (3.5)

Note that the determinant factor presents the required scalar density of weight +2 be-

cause C is a contravariant tensor. The tensor G describing the ray surfaces will be called

the Fresnel tensor induced from the area metric G.

In order to illustrate the geometric role of the Fresnel tensor G in a familiar setting,

consider the action (3.1) on a Lorentzian manifold (M,g), on which, for the time being,

the area measure is simply induced from the metric g by virtue of (1.1). A more subtle

discussion of metric-induced measures will follow in section 5. In this case the action

reduces to the standard form
∫

F ∧ ∗gF . Moreover, a direct calculation shows that the

Fresnel tensor simplifies to

Ga1...a2(d−2) = g(a1a2 . . . ga2d−5a2(d−2)) , (3.6)

so that the Fresnel equation (3.5) takes the factorized form

(gabpapb)
d−2 = 0 . (3.7)

This result is of course equivalent to the standard null condition for light rays propagating

on a metric manifold.

The insight to be drawn from this comparison is the fact that, a priori, it is not a

metric that describes the propagation of rays (not even in the metric case), but rather the

Fresnel tensor G (which however happens to factorize neatly to the form (3.7) in the case

of a metric background). Hence, it is useful to make a conceptual difference between the

background structure (metric or area metric) employed to define one-form dynamics on

the one hand, and the structure that describes that theory in the geometric-optical limit

(the Fresnel tensor) on the other hand, although we are used to think of these structures

as synonymous in the metric case.

There is an important corollary from the above findings, of which we will make es-

sential use in section 6. For an area metric in three dimensions, the (totally symmetric)

Fresnel tensor Gab is of second rank, and with some amount of algebra, one checks that

Gab is invertible. Furthermore, (G−1)ab induces the area metric we started with, by ex-

pression (1.1). Hence, in three dimensions, every area metric is induced from some metric.

This is no longer the case in more than three dimensions.

4. Normal area metrics and signature

As a second step towards the extraction of an effective metric from the area metric, we

identify in this section a family hσ of pre-metrics on M which are induced by an area metric

via the Fresnel tensor. If the area metric data distinguish a non-degenerate member of that

family (in a way we will explain below), the area metric manifold will be called normal. In

other words, normal area metrics allow for the extraction of a metric.
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Probing an area metric manifold of arbitrary dimension by abelian gauge theory, we

found that wave propagation in the geometric-optical limit is described by the Fresnel ten-

sor (3.5), not by a metric. We may use the totally symmetric Fresnel tensor to define a

symmetric bilinear form on a subbundle of the cotangent bundle T ∗M (with bundle projec-

tion π : TM → M) by the following construction, which in similar form finds application

in Finslerian geometry [37]. We choose local coordinates xa on U ⊂ M which induce lo-

cal coordinates (xa, pa) on π−1(U) ⊂ T ∗M , by virtue of p = padxa. Then we define the

characteristic function

h(x, p) :=
(

G(x)a1...a2(d−2)pa1 . . . pa2(d−2)

)1/(d−2)
(4.1)

on that portion N ⊂ T ∗M of the cotangent bundle where h takes real values. Thus N is a

level set of the function on the total bundle space defined by the imaginary part of h, and

hence defines a subbundle of T ∗M , with π(N) = M . For any x ∈ M , the function h(x, p) is

homogeneous of degree two in p, i.e., h(x, λp) = λ2h(x, p). From the characteristic function

we may now define a symmetric tensor field hab by differentiating h twice with respect to

the fibre coordinate

hab(x, p) :=
1

2

∂2

∂pa ∂pb
h(x, p) . (4.2)

This is indeed a tensor under diffeomorphisms of M since they do not depend on the fibre

coordinates p. It is quickly verified that

hab(x, λp) = hab(x, p) , (4.3)

so that the bilinear form h only depends on the direction of p in the fibre, not on its

‘length’. This scaling behaviour of hab is consistent with the scaling of the characteristic

function h.

A simple and fruitful way of looking at this construction is to think of an area metric

as giving rise to a family hσ of symmetric contravariant tensors on M with components

hab
σ(x)(x) := hab(x, σ(x)) , (4.4)

parametrized by sections σ : M → N ⊂ T ∗M . Viewing the characteristic function h as

a generalized norm squared on cotangent vectors p, the symmetric covariant tensors hσ

present linearizations of this norm around the chosen section σ. We emphasize again the

fact that only the cyclic part C of the inverse area metric G−1 contributed to the Fresnel

tensor G, and hence to the construction of the symmetric tensors hab
σ .

An important class of area metric manifolds are those for which one may construct

a particular section σG : M → N alone from the data of the area metric tensor G, such

that hab
σG

is non-degenerate on all of M . Then (M,G, σG) will be called a normal area

metric manifold. We will see that normality of an area metric is an inevitable requirement

for the construction of area metric curvature tensors that are downward compatible to their

metric counterparts. But it is not a big restriction. We will show in the next section that

one-forms σ can always be constructed from the area metric, albeit not always uniquely.

Also, det hab
σG

6= 0 is an open condition so that normality is the rule not the exception. In
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particular, we will show that area metrics induced from Riemannian metrics are always

normal. For Lorentzian metrics in even dimensions, we find that the construction of a

normal area metric interestingly requires that the Lorentzian metric should describe a

stably causal spacetime.

The signature of a normal area metric manifold (M,G, σG) is defined as the signature

(t, s) ≡ (− · · ·−+ · · ·+) of the metric hσG
constructed from G and σG. With this definition,

we may define the totally antisymmetric tensor density εa1...ad to be normalized such that

ε1...d = (−1)t. This in turn induces the contravariant tensor ω with components

ωa1...ad

G = |Det G|−1/(2d−2)εa1...ad . (4.5)

It is necessary to distinguish the tensors ω and ω, because their components are in general

not related by lowering and raising of indices with the area metric and inverse area metric,

respectively. With these definitions, we obtain for the contraction over k indices the useful

identity

ω
a1...ad−k m1...mk

G ωG b1...bd−k m1...mk
= (−1)t (d − k)! δ

[a1 ...ad−k ]
b1...bd−k

. (4.6)

5. Effective metric

We now complete the construction of an effective metric from a generic area metric manifold

(M,G) without specifying additional data. From our findings in sections 3 and 4, we

know that the extraction of a metric from area metric data amounts to the construction

of a section σ of the subbundle N ⊂ T ∗M , as defined by reality of the characteristic

function (4.1), such that (M,G, σ) is normal. Then the inverse of the tensor hσ as defined

in (4.4) provides the desired metric. In order to achieve downward compatibility with metric

geometry, we further require that for metric-induced area metrics the inducing metric g

is recovered up to a sign (more cannot be expected since the metric-induced area metrics

are quadratic expressions). This requirement will lead to a modification of the induction

formula (1.1) for Lorentzian metrics.

The Fresnel tensor for a metric-induced area metric (1.1) takes the simple form (3.6).

Then the characteristic function (4.1) is given by

h(x, p) = (g−1(p, p)d−2)1/(d−2) =

{

|g−1(p, p)| if dim M even

g−1(p, p) if dim M odd
. (5.1)

In both cases this is real on the entire cotangent bundle, so that N = T ∗M . Now, however,

appears a crucial difference between metric manifolds of different signatures. First consider

the case of a Riemannian metric g where h(x, p) = g−1(p, p) independent of the dimension.

In this case all members of the family hab
σ of metrics coincide, and are given, for an arbitrary

section σ, by

hab
σ (x) = gab(x) . (5.2)

This means that any choice of section σ(x) recovers the inducing Riemannian metric g

from the area metric Gg, including the zero section that does not even require area metric

data. Thus (M,Gg) is normal if g is a Riemannian metric. The same conclusion holds if g
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is an odd-dimensional Lorentzian metric. But now let g be an even-dimensional Lorentzian

metric. Then the family hσ of metrics is given by

hab
σ (x) =

g−1(σ, σ)

|g−1(σ, σ)|g
ab(x) . (5.3)

In contrast to the Riemannian case, it is now not possible to choose the zero-section in

order to recover the inducing Lorentzian metric.

This means we must obtain a non-trivial section from the area metric in order to be

downwards compatible to the metric-induced case. Otherwise the construction would fail

for the even-dimensional Lorentzian case. We first observe that the required section σ

cannot be constructed alone from the cyclic part C of the inverse area metric. This is

because the only one-forms obtainable from C are of the form

dTr
∏

i

(C∗)ni(∗C−1)mi (5.4)

where ni and mi are a finite set of non-negative integers and (C∗)ab
cd = Cabm1m2ωC m1m2cd

and (∗C−1)ab
cd = ωabm1m2

C Cm1m2cd. Now for an area metric that is metric-induced accord-

ing to (1.1), we have C = C−1
g and C−1 = Cg, so that both C and its inverse are cylic

(which, we recall, does not hold for generic area metrics). Then it is easily verified that all

of the one-forms (5.4) vanish. Thus we are compelled to conclude that information from the

area metric beyond the cyclic part C is needed for the definition of a non-trivial section σ.

We hence turn to the four-form part of the inverse area metric as a potential carrier of

this information. This fits nicely together with the observation that hab(x, p) is defined

entirely in terms of the cyclic part of the inverse area metric. So the four-form part will

exclusively contribute to the construction of the section σ which replaces p, while the cyclic

part exclusively contributes to the definition of the bilinear symmetric tensor hab(x, p).

For an area metric manifold of dimension d ≥ 4, we may schematically decompose the

inverse area metric as

G−1 = C + ωC xφ (5.5)

so that the information in the four-form part is succinctly encoded in a (d−4)-form φ(d−4).

Now four-dimensional area metric manifolds are distinguished since, in this dimension, the

construction of a one-form from the four-form part of G−1 is unique. The only possible

choice is

σG = dφ(0). (5.6)

Any rescaling of this choice, even by a function, is without effect because of relation (4.3).

Due to the symmetries of G−1 and ω, it is also not possible to construct further non-

vanishing one-forms from dφ. Already in five dimensions, there are several possibilities,

φ(1) , dC(dφ(1), dφ(1)) . (5.7)

In even higher dimensions, the number of possibilities further proliferates.

So in four dimensions only may one speak of the normal area metric manifold (M,G, σ)

constructed from an area metric manifold. (At least, unless one could formulate further
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meaningful criteria to construct, also in higher dimensions, a natural section σG to single

out the effective metric from the family hσ of contravariant tensors.) From now on, we

will therefore restrict attention to the four-dimensional case, which of course also is the

one of immediate physical interest. A four-dimensional normal area metric manifold will

henceforth be denoted (M,G, gG) where

gG = hσG
= hdφ(0)

(5.8)

is the unique metric constructed from the area metric G. Generically, the metric gG of

course only encodes part of the information contained in the area metric. Other than in

dimension three, the area measure GgG
re-induced from the effective metric generically

does not agree with the measure determined by G.

The above constructions play out nicely for area metric manifolds induced by stably

causal spacetimes (M,g) in four dimensions. For the latter, there always exists a global

time function φ on M such that dφ is everywhere g-timelike [45]. Hence after a choice of

global time function φ has been made, the latter may be encoded directly into the totally

antisymmetric part of the inverse area metric:

(Gφ
g )−1 = C−1

g + φωg . (5.9)

Due to our mainly plus signature convention, the inducing Lorentzian metric may be recov-

ered, using (5.8) and (5.3), as g = −gG. So downward compatibility is maintained. From

now on, we will denote the inverse area metric (5.9) induced by some Lorentzian metric g

and a suitable scalar field φ always by (Gφ
g )−1. Inverting this one finds the relation

Gφ
g =

(

1 + φ2
)−1

(Cg − φωg) . (5.10)

This is the closest a normal area metric may come to a Lorentzian metric, and presents

an important class of area spacetimes which can be easily compared to standard metric

spacetime, see section 10. In the following section, we will see that cosmological symmetries,

for instance, enforce this special, almost metric, form of an area metric.

6. Isometries and Killing vectors

At this point it is useful to study isometries of area metric manifolds. This will provide

us with more evidence for the natural role non-cyclic area metrics play and prepare our

discussion of area metric cosmology.

A diffeomorphism h : M → M is called an area metric isometry if it preserves the area

metric in the sense that for all smooth vector fields U, V,A,B on M and all p ∈ M , we

have

Gh(p)(h∗U, h∗V, h∗A,h∗B) = Gp(U, V,A,B) , (6.1)

where h∗ denotes the push-forward with respect to h. As in the metric case, it is useful to

consider the generators of isometries, i.e., Killing vector fields X. Clearly, X is a Killing

vector field for an area metric manifold (M,G) if LXG = 0. This condition implies that the
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Killing vectors of a given area metric manifold, together with the standard commutator,

constitute a Lie algebra.

It is reassuring to verify that for a metric-induced area metric manifold, X is a Killing

vector of (M,Cg) if and only if X is a Killing vector of (M,g). This is indeed the case:

the implication LXg = 0 ⇒ LXCg = 0 is evident. Conversely, assume LXCg = 0. In

particular, for any pair of g-orthogonal vectors A,B, we have

0 = (LXCg)(A,B,A,B) = (LXg)(A,A)g(B,B) + (LXg)(B,B)g(A,A) . (6.2)

Now consider a g-orthonormal basis {Ai}, i = 1, . . . , d of TpM . For any three distinct

vectors A,B,C in such a basis, the relation above implies

0 = (LXg)(A,A)g(B,B) + (LXg)(B,B)g(A,A) , (6.3a)

0 = (LXg)(A,A)g(C,C) + (LXg)(C,C)g(A,A) , (6.3b)

0 = (LXg)(B,B)g(C,C) + (LXg)(C,C)g(B,B) . (6.3c)

This set of equations is homogeneous and non-degenerate with respect to (LXg)(A,A),

(LXg)(B,B), and (LXg)(C,C), so that it admits as the unique solution (LXg)(A,A) =

(LXg)(B,B) = (LXg)(C,C) = 0. To complete the proof, note that we then also have

0 = (LXCg)(A,C,B,C) = (LXg)(A,B)g(C,C) , (6.4)

so that (LXg)(A,B) = 0. It follows that LXg(Ai, Aj) = 0 for all i, j = 1, . . . , d; in other

words, LXg = 0. It is also worthwhile to note that, in the case G = Cg +ωxφ, the theorem

easily extends to LXG = 0 ⇔ LXg = 0 ∧ LXφ = 0.

Equipped with the definition of Killing vectors, we can now discuss physically relevant

applications. In particular, we will be able to construct the analogue of a Friedmann-

Lemâıtre-Robertson-Walker (FLRW) cosmology for an area metric background. We will

discover that a cosmological area metric in d = 4 is precisely of the form (5.9), with the

cyclic part being induced by a standard FLRW metric, and with the scalar field providing

an additional degree of freedom in comparison to metric geometry.

First recall that, given a Lie group action G × M → M on some smooth manifold

M , it is useful to define the following notions [44]. The orbit of some point p ∈ M is

the submanifold Op = {q ∈ M | q = g.p for some g ∈ G}. The isotropy group Ip at some

point p ∈ M is that subgroup of G whose action leaves p invariant. A submanifold N of

dimension n is said to be homogeneous if there is a transitive action of some Lie group G

on N , i.e. if Op = N for all p ∈ N . It is said to be spherically symmetric around a point p

if the isotropy group of p is SO(n), and the relative orbit of any other point q 6= p around

p is topologically equivalent to an (n − 1)-sphere.

In complete analogy with the standard, rigorous definition of a (spatially) homogeneous

and isotropic manifold in Lorentzian geometry, we can now define area metric cosmology,

i.e., FLRW area metric manifolds, as follows: (M,G) is a d-dimensional FLRW area met-

ric manifold if and only if it can be suitably sliced in (d − 1)-dimensional hypersurfaces,

which are homogeneous and spherically symmetric around each point. Additionally, the
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hypersurfaces must be spacelike, in the sense that the restriction of the area metric to them

must be positive definite.

In the four-dimensional case, on which we will focus, the general form of the area metric

compatible with these requirements can be easily determined. First of all, we note that

the area metric on the slices must be metric-induced, since the slices are three-dimensional

(compare the corollary at the end of section 3). The inducing metric ḡ must describe

three-dimensional maximally symmetric Riemannian manifolds with line element

ḡαβdxαdxβ =
dr2

1 − kr2
+ r2

(

dθ2 + sin2 θdφ2
)

(6.5)

for normalized curvature k = 0,±1, in the usual system of coordinates {x0, xα} =

{t, r, θ, φ}. For the restriction of the area metric to the slices of constant t we then obtain

the expression G|t αβγδ = S2(t)Cḡ αβγδ for some function S(t). Moreover, on each of the

spacelike slices, G0α0β behaves as a three-dimensional metric with respect to the entire

group of isometries. Therefore, introducing some function Q(t), we have

G0α0β = Q(t)ḡαβ . (6.6)

Finally, explicitly solving Killing conditions for the remaining components of the area

metric, one finds for the remaining non-vanishing components the form

Gtrθφ = −Gtθrφ = Gtφrθ = F (t)
r2 sin θ√
1 − kr2

(6.7)

for some function F (t). Employing a suitable rescaling of the time coordinate and redefining

the free functions S(t), Q(t), F (t), it is easy to verify that an FLRW area metric takes the

form G = GΦ
ĝ , see (5.9), where ĝ is the standard FLRW metric, so that

ĝabdxadxb = −dt2 + a2(t)ḡαβdxαdxβ , (6.8)

and Φ = Φ(t) only depends on time. Inverting G = GΦ
ĝ and redefining the scalar field, also

the inverse area metric decomposes into the form

(Gφ
ĝ )−1 = C−1

ĝ + φωĝ . (6.9)

Thus in comparison with the standard metric case, FLRW area metric manifolds in

d = 4 feature a time-dependent scalar degree of freedom φ(t) additional to those of the

metric, which happens to be encoded in the totally antisymmetric part of the (inverse)

area metric. If non-vanishing, the section σ = dφ will be ĝ-timelike, and thus render the

FLRW area metric normal, as discussed at the end of the previous section. Consequences

of this feature for the dynamics of such cosmological models will be discussed in sections 13

and 14.

7. Area metric connection and curvature

Our aim in this section is the construction of an area metric compatible connection and

area metric curvature, which are downward compatible to their metric counterparts. As
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discussed in [4], we principally need a connection on the non-vector bundle of area spaces

A2TM embedded in Λ2TM . In order to keep technicalities to a minimum, we will determine

this connection in terms of a covariant derivative ∇ on the vector bundle Λ2TM .

Consider a four-dimensional normal area metric manifold (M,G) ∼ (M,G, gG),

where gG is the unique metric constructed from G, as explained in section 5. The metric gG

immediately gives rise to the torsion-free Levi-Civita connection ∇LC , which of course lifts

to the Λ2TM -bundle in the standard way. While ∇LC provides a covariant derivative on

Λ2TM and is downward compatible, it is not of direct relevance for the area metric mani-

fold (M,G). On the one hand, it does not contain all the information contained in the area

metric, which follows from a simple counting of the number of independent components of

the effective metric that defines ∇LC . On the other hand, ∇LC does not obey the impor-

tant geometric property that the area metric should be covariantly constant: ∇LCG 6= 0 in

general. But covariant constancy of the area metric ensures, for instance, that the simplic-

ity condition (2.3) of a section Ω of Λ2TM is not violated by parallel transport; in other

words, areas are preserved under parallel transport [4]. But most importantly, we require

area metric compatibility because it allows us to determine a unique connection as follows.

First note that an arbitrary connection ∇ on Λ2TM , including the area metric com-

patible one we are seeking, differs at most by some tensor X from the lift of the Levi-Civita

connection, i.e.,

∇ZΩ = ∇LC
Z Ω + X(Z,Ω) (7.1)

or, in coordinates, (∇fΩ)ab = (∇LC
f Ω)ab +Xab

i1i2fΩi1i2 . In order to uniquely determine an

area metric-compatible connection ∇, we need to constrain the class of Λ2TM -connections

we are looking for. To this end note that for an arbitrary connection on the bundle Λ2TM

over a normal area metric manifold (M,G, gG), we may define the tensor

TG(Z,Ω,Σ) = G((∇Z −∇LC
Z )Ω,Σ) − G(Ω, (∇Z −∇LC

Z )Σ) , (7.2)

for any vector Z and sections Ω,Σ of Λ2TM . We call TG the relative torsion of the Λ2TM -

connection ∇ with respect to (M,G, gG). The virtue of having such a tensor is that one may

formulate a consistent condition on a generic Λ2TM connection by requiring TG to vanish

identically. This requirement corresponds to the symmetry condition Xabcdf = Xcdabf on

the components of the tensor X defined in (7.1), where indices have been lowered using

the area metric G. Vanishing relative torsion and area metric compatibility together,

∇G = 0 and TG = 0 , (7.3)

then uniquely determine the tensor X: using the first requirement ∇G = 0 gives

−(∇LC
Z G)(Ω,Σ) = (∇ZG −∇LC

Z G)(Ω,Σ) = −G(X(Z,Ω),Σ) − G(Ω,X(Z,Σ)) , (7.4)

while the second requirement TG = 0 allows us to equate this to −2G(X(Z,Ω),Σ). Then

X must be of the form

X(Z,Ω) =
1

2
G−1((∇LC

Z G)(Ω, ·), ·) , Xab
cdf =

1

4
Gabij∇LC

f Gijcd . (7.5)
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This result can also be obtained in the coordinate-free language of pre-connections

introduced in [4]. Then the relative torsion-free, area metric compatible Λ2TM -connection

is given by

∇ZΩ =
1

2
G−1(DZ(Ω, ·) + DZ [Ω, ·], ·) , (7.6)

with the symmetric and antisymmetric pre-connections

DZ(Ω,Σ) = ZG(Ω,Σ) , (7.7a)

DZ [Ω,Σ] = G(∇LC
Z Ω,Σ) − G(Ω,∇LC

Z Σ) , (7.7b)

respectively. Here the symmetric pre-connection is determined by ∇G = 0 alone, while

the antisymmetric pre-connection then is determined by TG = 0. Note that while in [4]

a metric g was assumed to be given as data in addition to an area metric in order to

construct a connection, the significant advance of this paper consists in having constructed

the metric gG in a unique manner from the area metric data alone. Hence we have now

achieved the construction of a true area metric connection, without additional data.

The identification of this unique connection ∇ associated with a normal four-

dimensional area metric manifold (M,G) now allows for the definition of the area metric

curvature in standard fashion

RG(X,Y )Ω = ∇X∇Y Ω −∇Y ∇XΩ −∇[X,Y ]Ω , (7.8)

whose components can be calculated to be

RG
a1a2

b1b2ij = 4δ
[a1

[b1
Ra2]

b2]ij +
(

∇LC
i Xa1a2

b1b2j + Xa1a2
f1f2iX

f1f2
b1b2j − (i ↔ j)

)

, (7.9)

where R is the curvature of the Levi-Civita connection ∇LC obtained from gG. Natural

contraction over indices 1 and 2 with indices 3 and 5 yields the area metric Ricci tensor

RG mn = RG
pq

pmqn . (7.10)

Another second rank tensor is defined by

N[ij] = RG
pq

pqij . (7.11)

Due to its antisymmetry, however, there is no contraction to a non-zero scalar of first order

in N ; the lowest order scalar one may build from Nij is G−1(N,N). This invariant is

therefore of no interest to area metric gravity, as its inclusion in an action would drive the

derivative order of the equations of motion automatically beyond two. So the unique area

metric curvature scalar of linear order in Ra1a2
G b1b2ij , is the area metric Ricci scalar

RG = gmn
G RGmn . (7.12)

In the case of an area metric Cg induced from a Riemannian metric we have X = 0

from (7.5). Hence it is immediately clear that the area metric Ricci tensor and Ricci scalar

reduce to their metric counterparts while the tensor N vanishes. The Lorentzian case is
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less obvious; recall that inducing a normal area metric from a Lorentzian metric requires

the addition of a scalar φ whose gradient dφ is a globally non-null one-form field; according

to (5.9) the area metric is G−1 = (Gφ
g )−1. It may now be checked, however, that also in

this case all of the above curvature tensors reduce to their metric counterparts, and that N

vanishes identically. This proves the required downward compatibility to metric geometry.

We will use the curvature invariant RG in the following second part of the paper for the

construction of an area metric gravity theory.

Part two: area metric gravity

The discussion of area metric gravity in this second part is self-contained, since the relevant

results of area metric geometry developed in Part One are concisely summarized in the

following section 8. The general formalism of area metric gravity and its coupling to matter

is developed in section 9, followed by a comparison of almost metric vacuum solutions to

standard general relativity in section 10. Fluids on area metric spacetimes are necessarily

string fluids, as is explained in sections 11 and 12. Building on these preliminaries, we

apply area metric geometry to cosmology in section 13, and find the exact solution for a

homogeneous and isotropic area metric universe filled with string dust in section 14. This

leads to the prediction that area metric cosmology may explain, without dark energy or

fine-tuning, the small late-time acceleration of our Universe.

8. Practical synopsis of area metric geometry

In this brief section, we give a practical guide to the construction of area metric curvature

in four dimensions. For derivations and details of the construction in coordinate-free

fashion, see Part One of this paper. A Lorentzian area metric on a smooth four-dimensional

manifold M is a covariant tensor

Gabcd = G[ab][cd] = G[cd][ab] , (8.1)

whose inverse is defined as the contravariant tensor Gabcd satisfying

GabmnGmncd = 4δ[a
c δ

b]
d . (8.2)

Considering ordered pairs of indices a1 < a2, one may write an area metric in four di-

mensions in Petrov notation, i.e., as a 6 × 6 matrix GAB with A,B taking values in the

set {[01], [02], [03], [12], [13], [23]}. Defining Det G as the determinant taken over the ma-

trix GAB , one may define covariant and contravariant area metric volume tensors

ωGabcd = |Det G|1/6εabcd and ωabcd
G = |Det G|−1/6εabcd , (8.3)

where the totally antisymmetric tensor densities ε are normalized so that ε0123 = +1 and

ε0123 = −1, respectively. The inverse area metric uniquely decomposes as

Gabcd = Cabcd + φωabcd
C , (8.4)
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i.e., into a cyclic part Ca[bcd] = 0 and a totally antisymmetric part, which in four dimensions

amounts to the specification of a function φ on M . The definition of ωC is that of ωG,

with C replaced by G. A normal area metric allows to extract a unique effective metric

gab
G (x) =

1

2

∂2

∂pa∂pb

∣

∣

∣

∣

p=dφ

(

− 1

24
ωC mnpqωC rstuCmnriCjpskC lqtupipjpkpl

)1/2

, (8.5)

from the area metric data. In case the area metric is almost metric, i.e.,

Gabcd = gacgbd − gadgbc + φωabcd
g (8.6)

for some metric g, the effective metric gG recovers the inducing metric g up to a sign, which

validates the present construction independent of its deeper geometric meaning discussed

in Part One of this paper. Finally, the area metric curvature tensor is given by

R[a1a2]
G [b1b2][ij] = 4δ

[a1

[b1
Ra2]

b2]ij +
(

∇LC
i Xa1a2

b1b2j +
1

2
Xa1a2

pqiX
pq

b1b2j − (i ↔ j)
)

, (8.7)

where R and ∇LC are the Riemann tensor and the Levi-Civita connection of the effective

metric gG, and the non-metricity tensor X is defined by

Xa1a2
b1b2f =

1

4
Ga1a2mn∇fGmnb1b2 = X [a1a2]

[b1b2]f . (8.8)

The area metric curvature tensor, as well as the associated area metric Ricci tensor

(RG)ab = Rpq
paqb and area metric Ricci scalar R = gab

G (RG)ab, reduce to their metric

counterparts for almost metric area metrics. These correspondences ensure in particular

that area metric geometry is downward compatible to metric geometry, which is therefore

contained as a special case.

9. Area metric gravity action and matter coupling

Area metric geometry allows us to devise a gravity theory different from Einstein’s without

modifying the form of the Einstein-Hilbert action; the latter is just re-interpreted as an

action for an area metric manifold, with all metric quantities being replaced by their area

metric counterparts. We restrict our study of the area metric version of the Einstein-

Hilbert action to four dimensions, as only there the standard metric version enjoys its

truly special status due to Lovelock’s theorem [46, 47]. Thus we adopt the following action

for four-dimensional normal area metric spacetimes (M,G):

Sgrav + Sm =
1

2κ

∫

M
ωG RG +

∫

M
Lm (9.1)

from which the equations of motion are derived by variation with respect to the (inverse)

area metric G. The gravitational constant κ is not yet determined at this stage. The

quantity Lm represents the matter Lagrangian scalar density, which in many cases is simply

Lm = ωGLm in terms of a scalar Lagrangian Lm.

The diffeomorphism invariance of the action immediately implies an area metric

Bianchi identity for the gravitational part of the action, and the conservation law for
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the area metric energy-momentum tensor T . In order to study the latter, consider a dif-

feomorphism on M generated by a vector field ξ. The induced variation of the inverse area

metric may be expressed covariantly as a Lie derivative,

δGabcd = (LξG)abcd = ξp∇LC
p Gabcd + 2∇LC

p ξ[aGb]pcd + 2∇LC
p ξ[cGd]pab , (9.2)

where the second equality uses the Levi-Civita connection of the effective metric. Re-

quiring invariance of the matter action under this variation by setting δSm = 0, i.e.,

0 =
∫

M δGabcd δSm/δGabcd, and performing some partial integration, we are led to the

conservation equation

Tabcd∇LC
i Gabcd − 4

(

∇LC
p +

1

2(d − 1)
Xp

)

(

TabcdG
abp[cδ

d]
i

)

= 0 . (9.3)

for the fourth rank tensor

Tabcd = −|Det G|−1/(2d−2) δSm

δGabcd
. (9.4)

We call this tensor T the generalized energy-momentum tensor of matter on an area metric

manifold. Since it is derived by variation with respect to the inverse area metric, it has the

symmetries of the area metric. In particular it may contain a totally antisymmetric part

in the decomposition under the local frame group.

Computationally performing the variation of the gravitational part of the action is

rather involved; it is given in full detail in appendix B. From the reducibility of the inverse

area metric G into a cyclic and totally antisymmetric part, however, it is clear that in four

dimensions the equations of motion for generic area metrics can be separated accordingly.

So if the tensor Kabcd denotes the variation of the gravitational part of the action (9.1)

with respect to the inverse area metric G−1, i.e.,

Kabcd = |Det G|−1/6 δ(κSgrav)

δGabcd
, (9.5)

then, using equation (B.10), we may decompose the total variation into those terms arising

from the gravitational part

δSgrav =
1

κ

∫

M
ωG

[

δφ
(

ω̄abcd
C Kabcd

)

+ δCabcd

(

Kabcd +
1

24
φω̄ijkl

C KijklC
−1
abcd

)]

, (9.6)

and into those from the matter part

δSm = −
∫

M
ωG

[

δφ
(

ω̄abcd
C Tabcd

)

+ δCabcd

(

Tabcd +
1

24
φω̄ijkl

C TijklC
−1
abcd

)]

. (9.7)

Taking care to impose the symmetries of δCabcd on the expressions in brackets that are

contracted with it, we may thus define the cyclic contributions KC and TC , and the scalar

contributions Kφ and T φ of the gravitational tensor K and the energy-momentum tensor

T to the equations of motion. In terms of these quantities, whose explicit form is derived

in appendix B, the full equations of motion for area metric gravity take the form

KC
abcd = κTC

abcd , (9.8a)

Kφ = κT φ . (9.8b)

– 19 –



J
H
E
P
0
2
(
2
0
0
7
)
0
3
0

Of course, these field equations are far too complex to be exactly solved in general, and

one has to content oneself with studying exact solutions for highly symmetric spacetimes.

For area metric cosmology we will start this program below.

As an example for the general theory outlined above, consider the theory of electro-

dynamics defined by the action (3.1). Variation of this action with respect to the inverse

area metric yields the generalized energy momentum tensor

Tabcd =
1

8
FabFcd −

1

64(d − 1)
GabcdG

ijklFijFkl . (9.9)

As an aside we note here that d = 4 is special because it is only in this dimension that

we have GabcdTabcd = 0 for arbitrary electromagnetic fields. We may now substitute the

expression for T into the conservation equation above. The coupling of the area metric

background and the gauge theory is then only consistent if this equation is satisfied. This is

in fact to be expected since the energy momentum tensor was derived from a diffeomorphism

invariant action. In order to see explicitly that this is indeed the case, we rewrite the

resulting conservation condition for electrodynamics in the form

3

4
GabcdFab∇TM

[i Fcd] +
1

2
Fdi

(

∇TM
c +

1

2(d − 1)
Xc

)

(

GcdabFab

)

= 0 . (9.10)

All covariant derivatives in this expression may be replaced with partial derivatives by

using the definition of the dual electromagnetic induction (d − 2)-form, see (3.2). In this

way we obtain

3

4
GabcdFab∂[iFcd] +

1

2
(−1)dFidiω

i1...id
G ∂[i1Hi2...id−1] = 0 . (9.11)

So the equations of motion of area metric electrodynamics, namely the Bianchi identity

dF = 0, and dH = 0 imply energy conservation, rendering the matter coupling consistent.

10. Almost metric manifolds

A question of immediate interest is of course how standard Einstein gravity fits into the

more general area metric framework, given its huge phenomenological success especially

regarding observations within our solar system.

More precisely, we would like to know under which circumstances there exist solutions

of (9.8) where the inverse area metric is of almost metric form G−1 = (Gφ
g )−1, see (5.9),

which is the closest one may get to the standard Lorentzian case. (Recall from section 5

that the field φ is needed in order to render the area metric induced from a Lorentzian

metric normal.) Interestingly, area metrics with cosmological symmetries are of almost

metric form, as we found in section 6. Thus the results of the present section will be

useful in our discussion of area metric cosmology in the following sections 11–14. The main

aim here, however, is to study the conditions under which area metric gravity reduces to

Einstein gravity.

In doing so, it is important to withstand the temptation to discuss the reduction

of (9.1) to the almost metric case at the level of the action. This cannot be meaningful
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a priori, because variation with respect to G sweeps out more variations than variations

with respect to a metric and a scalar field can do [48]. If one simply inserted the ansatz

G−1 = (Gφ
g )−1 into the total action, this would reduce the gravitational part to its standard

metric analogue, up to a φ-dependent conformal factor. But we will now show that this

does not correspond to what generically happens at the level of the full equations of motion

including matter.

So we insert the almost metric form G−1 = (Gφ
g )−1 into the full equations of motion,

which, as shown in technical detail in appendix C, neatly factorizes the cyclic contribu-

tion KC of the gravitational variation as

KC
abcd = S[a[cgd]b] + S[c[agb]d] , (10.1)

for some symmetric tensor S. If the cyclic contribution TC of the energy-momentum tensor

to the equations of motion is generated in like fashion from some symmetric second rank

tensor, then the field equations are equivalent to

κTab = Rab −
1

2
Rgab − φ̃−1

(

∇a∂bφ̃ − gab¤φ̃
)

= 4Kab , (10.2a)

κT φ = −φ̃(1 − φ̃2)1/2R , (10.2b)

where we define φ̃ = (1 + φ2)−1/2, Tab = 4TCm
amb and Kab ≡ KCm

amb. When we discuss

cosmological solutions below, we will have to make sure that φ̃ does not leave its allowed

range

0 ≤ φ̃ ≤ 1 . (10.3)

We will see that this can be understood as a consistency constraint on the initial conditions.

It is thus clear that for there to be an almost metric solution at all, the cyclic part of the

energy-momentum tensor at hand needs to factorize in the same fashion as (10.1).

In vacuo, this is of course trivially the case. It is also reassuring that the vacuum

system with T = 0 is causally well-behaved: in order to see this, we will now perform

suitable field redefinitions, and thus reveal that this system is conformally equivalent to

Einstein-Hilbert gravity minimally coupled to a massless scalar field. First, using the trace

of the first equation we may replace the system by a simpler one:

Rab = φ̃−1∇a∂bφ̃ , (10.4a)

¤φ̃ = 0 . (10.4b)

Now a conformal transformation of the metric and a simple redefinition of the scalar field

according to

gab = φ̃−1/2g̃ab and Φ = ln φ̃ (10.5)

shows that the vacuum equations of motion for an area metric of the almost metric form

G−1 = (Gφ
g )−1 are conformally equivalent to the system

R̃ab =
1

2
∂aΦ∂bΦ , ¤Φ = 0 . (10.6)
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These are precisely Einstein’s equations for g̃ coupled to a massless scalar field Φ, and thus

we know that also the original, conformally related theory is causal. We emphasize again

that the above equations are only valid for almost metric area metrics in vacuo. This very

special case, however, allows for a most important conclusion: any vacuum solution (M,g)

of Einstein-Hilbert gravity is a vacuum solution of area metric gravity (setting either φ̃ = 1,

or φ̃ → 0 with appropriate conditions on the derivatives, see (10.2)).

Upon the inclusion of matter however, it is no longer true that metric solutions of

Einstein-Hilbert gravity lift to solutions of area metric gravity. For instance, the area

metric energy-momentum tensor (9.9) for electrodynamics does not take the factorized

form (10.1) for the almost metric ansatz G−1 = (Gφ
g )−1, simply because the first term

does not even contain a metric. Thus, not only can electrodynamics live on a non-metric

area metric spacetime, but also in general electrodynamics backreacts in such a way as to

generate a non-metric area metric spacetime! This can only be avoided by restricting the

admissible geometries (and thus the variation) to a standard metric one. In other words,

while standard Einstein-Hilbert solutions are of course stationary points of the Einstein-

Hilbert action, they may fail to be stationary within the wider spectrum of area metric

manifolds, in the presence of matter whose energy momentum tensor does not factorize.

Thus it is the fact that we vary with respect to the area metric which causes the

potential departure from Einstein-Hilbert gravity in the presence of matter, while the

vacuum solutions of standard general relativity are also vacuum solutions of area metric

gravity.

11. Fluid energy momentum

In general relativity perfect fluids present an effective device to discuss the gravitational

effects of fundamental matter averaged over large scales. Especially in order to obtain

calculationally manageable cosmological models, the description of matter as an ubiquitous

fluid is necessary. In this section we will introduce fluid matter on area metric spacetimes

as the most general form of energy momentum consistent with area metric cosmology. This

discussion paves our way towards a first comparison between area metric cosmology and

Einstein cosmology.

The general form of the energy momentum four-tensor is restricted by the Killing

symmetries of a given area metric spacetime (M,G). Consider a diffeomorphism of M gen-

erated by a vector field ξ, and the resulting change δK of the variation of the gravitational

action with respect to G−1. There are two ways to express this quantity. The first simply

is the Lie derivative of the four-tensor K along ξ, i.e., δK = LξK. The second uses the

fact that K is completely determined by the area metric G; schematically it follows that

δK = δK/δG−1 · LξG
−1. Hence if X is a Killing symmetry of G, i.e., if LXG = 0, then we

conclude

LXKabcd =
δKabcd

δGijkl
(LXG)ijkl = 0 . (11.1)

The general form of the area metric gravity equations of motion, including matter, is

Kabcd = κTabcd . (11.2)
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The Lie derivative of the left hand side along any Killing symmetry X of the area metric G

vanishes, hence consistency requires that the energy momentum tensor should also satisfy

LXT = 0 for each of the background’s Killing symmetries. In other words, consistent

energy momentum tensors inherit the symmetries of the background. This conclusion is

analogous to the one used in standard general relativity to restrict the class of admitted

sources in a spacetime with specified symmetry properties.

We may repeat our discussion of section 6 to impose the symmetries of an FLRW area

metric cosmology on the four-tensor T . Recall that G−1 is defined in terms of the standard

FLRW metric g and a time-dependent scalar φ, and that we have a distinguished time

variable xa = (x0, xα). One then finds the components of T to be proportional to those of

the area metric up to time-dependent functions. We choose the following parametrization,

T0β0δ = − F

1 + φ2
Cg 0β0δ , (11.3a)

T0βγδ =
φJ

1 + φ2
ωg 0βγδ , (11.3b)

Tαβγδ =
N

1 + φ2
Cg αβγδ , (11.3c)

where the three functions F, J and N describe the local macroscopic properties of the fluid.

Below, we will match these functions with the usual notions of density and pressure for

a fluid. But first note that like in the metric case, the fluid energy momentum tensor is

not obtained from some Lagrangian, and so the conservation law (9.3) is not automatically

ensured. We have to impose the energy-momentum conservation condition on the tensor

T , which, using the Hubble function H = ȧ/a, leads to the equation of motion of the fluid,

0 = Ḟ + J̇φ2 − 3φφ̇ (F − J)

1 + φ2
+ 2H (F + N) . (11.4)

Before we turn to our main application of fluid matter, which will be to area metric

cosmology, we will introduce in the next section the notion of string fluids which allows us

to give a covariant interpretation to fluid matter on area metric spacetimes.

12. String fluids – geometry and cosmology

Area metric spacetimes (M,G) do not provide a measure of length which would be required

to formulate dynamics for the worldlines of point particles. But they do provide a measure

of area, and so one may regard string worldsheets as the minimal dynamical, and hence

fundamental, objects on area metric manifolds [12]. It is therefore reasonable to expect

that any collection of matter fields averaged over large scales should have an approximate

description in terms of a fluid made out of strings; this is in complete analogy to standard

general relativity where perfect (point particle) fluids are used for this purpose.

Our aim in this section is twofold: first we will formulate a simple energy momentum

four-tensor for a string fluid on an arbitrary area metric spacetime, and give a geometric
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interpretation for the consistency conditions arising from the energy conservation equa-

tion (9.3). Second, we will rewrite the general energy momentum tensor consistent with

area metric cosmology covariantly in terms of a string fluid; any collection of averaged

matter fields in cosmology can thus be understood as a continuous distribution of string

worldsheets.

We recall a few basic facts about classical strings on (M,G) from [4]. String worldsheets

are tangent surfaces to an integrable distribution of areas Ω = u ∧ v in A2TM . Thus

they satisfy the simplicity condtion (2.3) and the Frobenius integrability criterion: the

commutator of u and v lies within the plane spanned by 〈u, v〉. In components this is

equivalent to

Ωp[i∂pΩ
jk] = 0 . (12.1)

String dynamics follow from the stationarity of the worldsheet area integral, i.e., from
∫

d2σ
√

G(Ω,Ω) =
∫

d2σ
√

GC(Ω,Ω). The equality follows from the simplicity of Ω, if we

explicitly decompose the area metric as

Gabcd = GC
abcd + G4

abcd (12.2)

into the cyclic algebraic curvature tensor GC and a four form G4 in analogy to (1.3). It

has been shown in [4] that the string equation of motion takes a very simple form after

fixing the worldsheet reparametrization invariance to constant squared area G(Ω,Ω). The

stationarity, or minimal surface, condition then simply becomes

DΩΩ(Z) = d[GC (Ω, ·)](Ω ∧ Z) = 0 (12.3)

for any vector Z. Only the cyclic part of the area metric contributes to this equation.

The energy momentum four-tensor of a string fluid should be expressible in terms of

the area metric and the area distribution Ω. We now write down the simplest two terms

that obey the required symmetries of an area metric. One of these will then be shown to

represent fluids composed of non-interacting strings; the other term is an example for a

simple interaction. Define

Tabcd =
1

4
(ρ̃ + p̃)GabijΩ

ijGcdklΩ
kl +

1

3
p̃Gabcd (12.4)

in terms of two functions ρ̃ and p̃. In order to demonstrate the geometric meaning of these

terms we analyse the energy momentum conservation condition. As argued in the preceding

section this condition is not automatically satisfied, but nevertheless has to be imposed for

consistent matter coupling. We substitute (12.4) into (9.3); the resulting equation can be

rewritten as follows:

0 = −6(ρ̃+ p̃)Ωcd∇LC
[i

(

Gcd]abΩ
ab

)

−4GdiabΩ
ab

(

∇LC
c +

1

6
Xc

)

(

(ρ̃ + p̃)Ωcd
)

+8∂ip̃ (12.5)

Observe that the totally antisymmetric part of the area metric in the first term does

not contribute. This is a consequence of the simplicity (2.3) and the integrability (12.1)

of Ω. Hence we may replace G in the first term by its cyclic part GC . Due to the

antisymmetrization in this term we may also replace the covariant derivatives by partials.
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Let us discuss the case p̃ = 0 first. The first term then is recognizable as the stationarity

condition (12.3): the local string worlsheets in the string fluid are stationary, as is classical

string motion. The vanishing of the remaining second term in the string fluid conservation

equation is implied by a generalized continuity equation

0 =

(

∇LC
c +

1

6
Xc

)

(

ρ̃Ωcd
)

= ∂c

(

|Det G|1/6ρ̃Ωcd
)

, (12.6)

where the right hand side represents the divergence of a densitized current. In form-

language the continuity equation is equivalent to d[ρ̃ωG(·,Ω)] = 0 for the two-form ωG(·,Ω).

The geometrical picture for this equation is as follows. Choose any compact four-volume V

with boundary ∂V , and any hypersurface defined by Ψ = const. with gradient dΨ. The

projection on the hypersurface of the flow of the string fluid through ∂V is

∮

∂V
ρ̃ωG(·,Ω) ∧ dΨ =

∫

V
d[ρ̃ωG(·,Ω)] ∧ dΨ . (12.7)

This vanishes if the volume V lies entirely within the domain of the string fluid; then its

inflow and outflow through the boundary ∂V are precisely equal, independent of the choice

of projection on dΨ.

Thus the string fluid energy momentum tensor (12.4) is amenable to a simple analysis

for p̃ = 0: energy momentum conservation is valid provided that the string fluid obeys both

the stationarity equation and a generalized current conservation, or continuity, equation.

While the worldsheet minimal surfaces of this situation correspond to zero mean curvature

form DΩΩ = 0, switching on a non-constant pressure dp̃ 6= 0 means prescribing the local

mean curvature by the projection of the gradient field dp̃ into the surfaces Ω. Non-zero p̃

(even a constant one) also deforms the continuity equation. The term proportional to p̃

hence represents a certain class of interactions between the strings that form the string fluid.

Finally, we remark that constant p̃ 6= 0 (with ρ̃ = 0) generates precisely the same terms

that one would obtain by adding an area metric cosmological constant to the gravitational

action Sgrav, in perfect analogy with the metric case.

We now approach our second aim, and part, of this section: the covariant rewriting of

the most general energy momentum tensor consistent with area metric cosmology, see the

preceding section, in terms of a string fluid.

Recall that area metric cosmologies are of the almost metric type, featuring the FLRW

metric g and an additional time-dependent scalar φ. String fluid matter in cosmology is

tightly constrained; consistency with isotropy forbids a one-component string fluid, since

the local string worldsheets then would distinguish a preferred spatial direction. We there-

fore must resort to a string fluid with three components ΩI = ∂t∧vI , with three g-spacelike

vectors vI that may isotropically fill out the spatial sections in a four-dimensional cosmol-

ogy. Due to the distinguished cosmological time variable, xa = (x0, xα), the fluid en-

ergy momentum tensor (11.3) has components proportional to the 0β0δ, 0βγδ and αβγδ

projections of the area metric, respectively. These can be defined covariantly using the

three-component string fluid.
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Using the decomposition (12.2) we first define a projection (which is an endomorphism

on Λ2TM) to the purely spatial indices [αβ] by writing

2δ
[ab]
cd + Qab

cd , Qab
cd =

∑

I

Ωab
I GC

cdi1i2Ω
i1i2
I . (12.8)

To guarantee the right-action of this operator is a projection we need to satisfy Q2 = −Q,

which is easily achieved by the requirement

G(ΩI ,ΩJ) = −δIJ ⇔ g

(

vI
√

1 + φ2
,

vj
√

1 + φ2

)

= δIJ (12.9)

which relates the three components of the string fluid. For later convenience we solve

this by considering v0
I = 0 and vα

I /
√

1 + φ2 vielbeins of the three-dimensional metric gαβ :

then we have the useful relation
∑

I vα
I vβ

I /(1 + φ2) = gαβ . The second projection we need

is the one to the mixed indices [0β]. It is simply given by the right-action of −Q for

which of course (−Q)2 = −Q. There is one further way to covariantize the purely spatial

components Gg αβγδ of the area metric. Consider the operator

Q̃ab
cd =

∑

I

Ωab
I G4

cdi1i2Ω
i1i2
I . (12.10)

Since the ΩI all contain the preferred time vector ∂t, we have ΩI ∧ ΩJ = 0, and hence

Q̃2 = 0. So Q̃ is not a projection; it rather maps tensors with mixed indices [0β] to tensors

with purely spatial indices.

In terms of the three-component string fluid we hence rewrite the fluid energy momen-

tum as a sum of projections of the area metric to its different components, weighted each

by time-dependent functions:

Tabcd = Gp1p2r1r2

[

− ρ̃ Qp1p2
abQ

r1r2
cd + p̃

(

2δp1p2

ab + Qp1p2
ab

) (

2δr1r2
cd + Qr1r2

cd

)

(12.11)

− q̃
(

2δp1p2

ab + Qp1p2
ab

)

Qr1r2
cd − q̃ Qp1p2

ab

(

2δr1r2
cd + Qr1r2

cd

)

+ s̃ Q̃p1p2
abQ̃

r1r2
cd

]

.

We do not display two further non-vanishing terms involving Q̃Q and Q̃(δ + Q) since they

simply result in shifts of the functions q̃ and s̃. Making use of the schematic relation
∑

I [G
4(·,ΩI)G

C(·,ΩI) + GC(·,ΩI)G
4(·,ΩI)] = −G4(·, ·) which follows from the fact that

we have chosen the vα
I as vielbeins of gαβ , we may rewrite the energy momentum tensor as

Tabcd =(ρ̃+p̃)
1

4

∑

I

GabijΩ
ij
I GcdklΩ

kl
I −(ρ̃+p̃+s̃)

1

4

∑

I

G4
abijΩ

ij
I G4

cdklΩ
kl
I +p̃ Gabcd+(ρ̃+q̃)G4

abcd .

(12.12)

Note that we have four functions ρ̃, p̃, q̃, s̃ here, although three functions F, J,N as in (11.3)

should be sufficient. Without loss of generality we can in fact fix s̃ = −ρ̃ − p̃. If we do

so, and calculate the components T0β0δ, T0βγδ and Tαβγδ , comparison to (11.3) gives the

invertible relation

F = ρ̃ , J = −q̃ , N = ρ̃φ2 + p̃
(

1 + φ2
)

. (12.13)
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To conclude, the three-component string fluid tensor with s̃ = −ρ̃ − p̃ is a covariant

way to rewrite the general source tensor for all types of matter averaged over large scales

in an area metric cosmology as

Tabcd = (ρ̃ + p̃)
1

4

∑

I

GabijΩ
ij
I GcdklΩ

kl
I + p̃ Gabcd + (ρ̃ + q̃)G4

abcd . (12.14)

The energy momentum conservation equation follows from (11.4) and (12.13), using for

later convenience the redefinition 1 + φ2 = φ̃−2, and the Hubble function, as

0 = − ˙̃q +
(

˙̃ρ + ˙̃q
)

φ̃2 + 3 (ρ̃ + q̃) φ̃
˙̃
φ + 2H (ρ̃ + p̃) . (12.15)

A special case of the general expression (12.14) is the string fluid representing the sum

of three components of non-interacting strings, see (12.4), which we will call string dust.

From our previous discussion we read off the characteristic relations

p̃ = 0 , q̃ = −ρ̃ . (12.16)

We will use string dust in our discussion of the late universe, where interactions presumably

are neglibible.

13. Area metric cosmology

As a first application of the dynamical area metric manifold theory developed so far, we

derive in this section the equations of area metric cosmology, with the aim to compare our

theory to Einstein’s general relativity.

From our discussion of Killing symmetries we know that cosmological area metrics are

of the almost metric type, fully characterized by just two fields: the FLRW metric g and

a time-dependent scalar field φ. Thus we can use the simplified equations of motion (10.2)

discussed in section 10. These are of the general form

κTab = 4Kab and κT φ = Kφ . (13.1)

We perform a time space split by writing xa = (x0, xα), where greek indices denote spatial

coordinates. The characteristic property of the FLRW metric, which obeys g0α = 0, also

implies K0α = 0. Employing the definition Kβδ = K̃gβδ, and similarly for the spatial

components of the cosmological Ricci tensor, Rβδ = R̃gβδ , we explicitly obtain the following

expressions for the non-vanishing components K00 and K̃:

4K00 = R00 +
1

2
R + 3H ˙̃φφ̃−1 , (13.2a)

4K̃ = R̃ − 1

2
R − (

¨̃
φ + 2H

˙̃
φ)φ̃−1 , (13.2b)

where H = ȧ/a is used. The expression for Kφ is given by equation (C.5).

We now consider the matter contribution to the gravitational equations of motion.

As argued above the most general form of matter in area metric cosmology is given by a
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string fluid energy momentum tensor of the form (12.14). From the timelike normalizations

G(ΩI ,ΩI) = −1 we immediately find the string fluid contribution to the scalar equation

which simply reads

T φ = ω̄abcd
g Tabcd =

24φ

1 + φ2
q̃ . (13.3)

The four-tensor contribution TC
abcd is more involved. Since C−1 = Gg here, this projection

to an algebraic curvature tensor is

TC
abcd = Tabcd +

1

24
T φωg abcd +

1

24
φT φCg abcd (13.4)

=
ρ̃ + p̃

(1 + φ2)2

(

∑

I

ΩI abΩI cd + φ2
∑

I

ωg abijΩ
ij
I ωg cdklΩ

cd
I

)

+
p̃ + φ2q̃

1 + φ2
Cg abcd ,

where the indices on ΩI are lowered with the metric g. Importantly there are no non-

vanishing components TC
0βγδ. This is guaranteed by our construction and again shows

consistency with the area metric cosmology background. We proceed to calculate the non-

vanishing components of TC , which again uses the convenient form of the Ω0α
I as vielbeins

of gαβ . The results are

TC
0β0δ =

ρ̃ − φ2q̃

1 + φ2
gβδ , TC

αβγδ =
p̃ + φ2(ρ̃ + p̃ + q̃)

1 + φ2
Cg αβγδ . (13.5)

It is easy to see that TC is induced by a symmetric two-tensor in the same way as is KC

in (10.1). We now extract the components of Tab = 4TCm
amb; writing Tαβ = T̃ gαβ this

gives

T00 = 12
ρ̃ − φ2q̃

1 + φ2
, T̃ = 4

−ρ̃ + 2p̃ + φ2(2ρ̃ + 2p̃ + 3q̃)

1 + φ2
. (13.6)

According to (13.1), we finally combine our results for the gravitational contributions (13.2)

and our results for the matter contributions (13.6) to the general equations of area metric

cosmology coupled to any type of matter. The latter is described in a parametrization by

a three-component string fluid. We find the simple φ-equation

R + 24κq̃ = 0 . (13.7)

Calculating the trace of 4Kab = κTab and using (13.7), we deduce a standard scalar field

equation for φ̃,

¤φ̃ = ∂V/∂φ̃ , (13.8)

with potential

V (φ̃) = 4κ (ρ̃ + p̃ + q̃) φ̃2 − 4κ (ρ̃ + q̃) φ̃4 . (13.9)

Finally, using both (13.7) and (13.8) to simplify (13.1), we explicitly obtain the time-

time and spatial components of the Ricci tensor

R00 = −3H ˙̃φφ̃−1 + 12κ (ρ̃ + q̃) φ̃2 , (13.10a)

R̃ = −H ˙̃φφ̃−1 − 8κq̃ + 4κ (ρ̃ + q̃) φ̃2 . (13.10b)
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We may now easily compare our equations to those of Einstein gravity, i.e., to

Rab − Rgab/2 = 8πGTab, coupled to a perfect fluid with standard energy momentum

Tab = (ρ + p)uaub + gab. Performing the time space split these equations are

R00 = 8πG

(

1

2
ρ +

3

2
p

)

and R̃ = 8πG

(

1

2
ρ − 1

2
p

)

. (13.11)

Thus our string fluid gives rise to a perfect fluid with equation of state parameter

w =
p

ρ
=

x + y

3(x − y)
, x = −H ˙̃φφ̃−1 + 4κ(ρ̃ + q̃)φ̃2 , y = 4κq̃ . (13.12)

Before we analyze this effective behaviour further we have to perform a final consistency

check. Since the string fluid energy momentum four-tensor was not derived, by variation

with respect to the inverse area metric, from an action, we have to ensure that the energy

momentum conservation equation (12.15) is satisfied. Only then is the coupling of the

string fluid to the gravitational equations consistent. To see why this is true, we start

from the time-component of the contracted Bianchi identity ∇aR
a
0− Ṙ/2 = 0 which is the

standard fluid equation of motion ρ̇ + 3H(ρ + p) = 0. In our string fluid variables we thus

have

0 = ∂t

(

−3H ˙̃φφ̃−1 − 12κq̃ + 12κ (ρ̃ + q̃) φ̃2
)

+ 3H
(

−4H ˙̃φφ̃−1 − 8κq̃ + 16κ (ρ̃ + q̃) φ̃2
)

.

(13.13)

We expand the derivative of the term H ˙̃φφ̃−1; then we replace Ḣ by using the identity

R00 = −3Ḣ−3H2 which holds for any FLRW cosmology, and ¨̃φ by employing the equation

of motion of φ̃. Up to a sign, this precisely yields the energy momentum conservation

condition (12.15). Our cosmological three-component string fluid thus is consistent without

any further restrictions on the functions ρ̃, p̃ and q̃.

Let us turn to a closer inspection of the effective equation of state parameter w. We

obtain the following results which are generic for any string fluid, and thus for any type of

matter in area metric cosmology (in string fluid parametrization). In the limit y/x → 0 we

obtain the parameter w = 1/3 of an effective radiation fluid. Note that this limit is exactly

realized by the vacuum which, in particular, obeys y = 0. Thus the vacuum cosmology in

area metric geometry is equivalent to Einstein cosmology filled with a radiation fluid.

In the limit x/y → 0 we obtain the parameter w = −1/3 describing a universe with

zero acceleration ä = 0. Consider now the condition w < −1/3 for an accelerating universe;

it is satisfied if either y < x < 0 or y > x > 0. For values of y close to the simple pole in

w at y = x, we may obtain any value of w, both positive or negative. So string fluids in

principle should be able to describe any physical universe. Moreover, the diverging effective

equation of state parameter w → −∞ close to the pole is a temptation to speculate on

a possible explanation for the inflationary phase of the universe. Whether this can be

realized, however, requires a careful analysis and solutions of the equations.

In the next section we will explicitly analyze the important case of the late universe,

which is characterized by non-interacting matter. We will show that area metric cosmology

provides a natural explanation for the observed acceleration of our Universe.
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14. String dust cosmology – the accelerating universe

In this section we exactly solve the equations of area metric cosmology filled with non-

interacting matter, which we describe by string dust. This is the simplest scenario to

which we can apply our theory. Moreover, it should describe the late universe, where

matter on average has spread out so much that interactions are no longer important.

The defining relations for string dust have been discussed in (12.16). We employ these

and collect the complete set of equations of motion. The scalar equation of motion follows

from (13.9) as

0 = ¨̃φ + 3H ˙̃φ . (14.1)

We also have the gravitational equations (13.10) which, in the string dust case, read

Ḣ + H2 = H ˙̃φφ̃−1 , (14.2a)

2ka−2 + Ḣ + 3H2 = −H ˙̃φφ̃−1 + 8κρ̃ . (14.2b)

In the non-vacuum case where ρ̃ 6= 0, an equivalent system is obtained by replacing one of

the three equations above by the simpler continuity equation which follows from (12.15),

i.e.,

0 = ˙̃ρ + 2Hρ̃ (14.3)

and we will, in fact, replace the scalar equation of motion.

Dividing the first of the gravitational equations (14.2) by H we deduce Ha/φ̃ = λ−1

for constant λ. So φ̃ is determined by the scale factor. The continuity equation is easily

integrated, and yields ρ̃ in terms of the scale factor and a constant ζ. Explicitly we find

φ̃ = λȧ , (14.4a)

ρ̃ = ζa−2 . (14.4b)

The remaining equation we have to solve in order to obtain the string dust solution follows

from the second gravitational equation in (14.2):

0 = ä +
ȧ2

a
+

k − 4κζ

a
. (14.5)

We are interested in the effective equation of state parameter for the perfect fluid that is

created by area metric cosmology in addition to Einstein cosmology. Hence we rewrite the

defining relations for the parameters x and y in (13.12) using the above equations. This

yields

x =
ȧ2 + ξ

a2
, y =

ξ − k

a2
(14.6)

for ξ = k − 4κζ. Hence the definition of the parameter w results in

w =
1

3
− 8κ

3

ζ

ȧ2 + k
. (14.7)

We conclude that once we have a solution of (14.5) for the scale factor a, the whole system

of equations is integrated, and provides ρ̃, φ̃ and w.
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Equation (14.5) is exactly solved by the scale factor

a(t) =

{
√

c (t − t0) for ξ = 0 ,
√

cξ−1 − ξ (t − t0)
2 for ξ 6= 0 ,

(14.8)

for integration constants c and t0. The parameter ξ is defined as above. For the sake of

completeness, we will now discuss three possible cases ξ = 0, ξ > 0 and ξ < 0, assuming

ζ > 0 (the discussion for ζ < 0 is very similar but does not contain consistent k = 0

cosmologies). However, it is evident that the only relevant case for our model of late

time cosmology is ξ < 0, since ξ = 0 requires fine-tuning, and ξ > 0 evolves towards a

contracting universe, against the assumed predominance of the string dust component.

(i) Case ξ = 0. This case with k = 4κζ can only be realized by positively curved k = +1

cosmologies; this fixes ζ which is not generic. We also need positive c > 0 and t− t0 > 0 for

a real solution. We find ȧa = c/2 so that the effective equation of state parameter follows

from (14.7) as

w =
1

3
− 8k (t − t0)

3 (c + 4k (t − t0))
. (14.9)

It is not difficult to show that w > −1/3 for all t > t0. In the limit t → ∞ we find

w → −1/3. Consistency requires 0 ≤ φ̃ ≤ 1, see the discussion for (10.3). Since φ̃ = λȧ

one can show consistency for λ > 0 and large t− t0. So this case of a string dust filled area

metric cosmology describes an open, eternally decelerating, universe with initial singularity,

for which the acceleration tends to zero for late times, see figure 1.

(ii) Case ξ > 0. The solution for the scale factor holds for positive c > 0 and is the

upper half of an ellipsoid, defined for (t − t0)
2 < c/ξ2. We deduce ȧ = −ξ(t − t0)/a, but

this leads to an inconsistency. For late times, i.e., for t − t0 →
√

c/ξ2, the derivative ȧ

diverges, and hence φ̃ so that 0 ≤ φ̃ ≤ 1 cannot be satisfied. Therefore this closed universe

is not a valid solution.

(iii) Case ξ < 0. This case will turn out to be the most interesting. It has k < 4κζ,

and so it can be realized by negatively curved k = −1 and flat k = 0 cosmologies without

further restrictions. It can also be realized by k = +1 cosmologies, but this requires a

matter density 4ζ > 1/κ. Again ȧ = −ξ(t − t0)/a so that the effective equation of state

parameter takes the form

w =
1

3
−

8κζ
(

c − ξ2 (t − t0)
2
)

3kc − 12κζξ2 (t − t0)
2 . (14.10)

But here, for ξ < 0, we have to discuss two subcases depending on the sign of the integration

constant c. If c > 0 then the solution is defined for t − t0 >
√

c/ξ2. If c < 0 then the

solution is defined for all t. For both signs of c we obtain the late time limit of w → −1/3.

We can also check consistency for late times t−t0 → ∞. If 0 < λ
√−ξ < 1 this limit ensures

0 ≤ φ̃ ≤ 1. The solution with c > 0 corresponds to an open, eternally decelerating, universe

with initial singularity, for which the acceleration tends to zero for late times. The solution
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d a/dt >022

t

a(t)

Figure 1: The solid curves in this sketch show the area metric cosmologies filled with string dust.

From bottom to top these are the cases ξ = 0, ξ < 0 with c > 0, and ξ > 0 with c < 0. The

dashed curve depicts the inconsistent case ξ > 0. The top curve is an important new result from

area geometry (and cannot be obtained as a dust-filled Einstein cosmology): late-time acceleration

that tends to zero for t → ∞.

for c < 0 describes an open, eternally accelerating, universe without singularities that passes

a minimal radius a(t0) =
√

cξ and has a late-time acceleration tending to zero, see figure 1.

It is worthwhile to note that the sign of c is, in principle, deducible from evaluation of the

Hubble parameter and of the density ρ̃ at present time, since sign(c) = sign(ξ + ȧ2). In the

case of a flat Universe, for example, acceleration (c < 0) is obtained if 4κρ̃0 > H2
0 (note,

however, that the precise value of κ has still to be fixed, e.g., from comparison with solar

system experiments.)

We conclude that non-interacting string dust matter in area metric cosmology is equiv-

alent to Einstein cosmology filled with a perfect fluid, but, importantly, it provides a more

interesting phenomenology than does an Einstein universe filled with standard pressure-

free dust. First, area metric cosmology predicts an open late universe, since the closed

cosmology is inconsistent. Second, and most strikingly, area metric cosmology may nat-

urally explain, for all k = 0 and k = ±1 cosmologies, the late-time acceleration of the

universe! This explanation neither invokes fundamentally unexplained concepts such as a

cosmological constant or other forms of dark energy, nor does it invoke fine-tuning since

the acceleration automatically tends to small values at late time; these results become

consequences of area geometry applied to the very simplest scenario, cosmology.

15. Conclusions

This paper is based on the hypothesis that spacetime is an area metric manifold, which

presents a true generalization of metric geometry in dimensions greater than three. By

constructing a rigid extension of general relativity to area metric geometry, which can

explain the acceleration of the late universe without additional assumptions, we have shown

that this idea can be taken to surprisingly interesting conclusions.
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The physically immediately relevant case of a four-dimensional area metric manifold

is distinguished, since we have shown that the area metric geometry on three-dimensional

submanifolds is equivalent to some metric geometry. This reconciles the idea of an area

metric spacetime with the phenomenological fact that we can measure lengths and angles

in our individual spatial sections. Paying tribute to the phenomenal success of the metric

description of spacetime in general relativity, we have constructed curvature invariants that

are downward compatible to their metric counterparts. Crucial for this achievement was

the extraction of an effective spacetime metric from the fundamental area metric data.

The availability of an area metric curvature scalar, which reduces to the metric Ricci

tensor precisely for a metric-induced area metric, in particular allows us to read the

Einstein-Hilbert action as dynamics for an area metric. Remarkably, the equations of

motion, derived by variation with respect to the area metric, are of second differential or-

der. This circumvention of Lovelock’s theorem [46, 47] (which for metric manifolds asserts

that standard general relativity is the only geometric gravity theory with second order

equations) underlines one remarkable aspect of this modification of general relativity. An-

other distinguished feature is that the area metric extension of Einstein gravity is rigid, in

the sense that it does not use an undetermined deformation (length) scale to add deriva-

tive or curvature corrections to the Einstein-Hilbert action, see e.g. [49 – 54], nor does it

simply add additional fields propagating on a given background metric, as do scalar tensor

theories, see e.g. [55 – 58].

We saw that the theory is downward compatible to general relativity in vacuo: every

vacuum solution of Einstein’s equations also solves the vacuum equations of area metric

gravity. Upon the inclusion of matter, however, solutions of Einstein-Hilbert gravity no

longer induce solutions of area metric gravity. A case in point is the area metric Einstein-

Maxwell theory, which is only consistent for true area metric backgrounds. In other words,

not only can electromagnetic fields propagate on an area metric background, but their

backreaction requires a deviation from a purely metric spacetime.

The simplest departure from standard metric theory occurs for area metrics of almost

metric type, which are determined by a metric and a single scalar. We have shown that

the vacuum equations of area metric gravity for this situation are causally well-behaved;

conformal transformation and field redefinition demonstrates their equivalence to Einstein

gravity coupled to a free scalar field. It should be noted, however, that the equations arising

from area metric gravity have to be interpreted without these transformations, since they

are not available in the generic, not almost metric, case. The scalar field in the almost

metric setting therefore must not be regarded as a field on a metric background, but is

itself part of the area metric geometry. The consequences of this mechanism become most

apparent in cosmology, which is of the almost metric type, where the scalar in fact behaves

as an effective radiation fluid, unlike a standard scalar field.

An area metric structure of spacetime implies that strings, not point particles, are the

minimal mechanical objects one may discuss [12]. An important consequence of this fact is

that the notion of a fluid in cosmology has to be built on an integrable distribution of local

worldsheets, rather than on a velocity field for worldlines. We have discussed string fluids

arising in this way, and shown that they covariantly describe any collection of matter fields
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consistent with area metric cosmology. So string fluids can be seen as matter averaged

over large scales. We find a remarkable correspondence between, on the one hand, area

metric cosmology coupled to the most general consistent string fluid, and, on the other

hand, Einstein cosmology coupled to a standard perfect fluid. The energy density and

pressure of this effective perfect fluid are given in terms of four functions: the scalar and

three parameters of the string fluid. This implies an enormous freedom in the effective

equation of state parameter which may, in principle, take any real value.

For the late universe one may assume that matter has spread out so much that interac-

tions are no longer important. We have derived exact solutions for area metric cosmology

filled with string dust, i.e., with non-interacting string fluids. While they show some simi-

larity to the solutions of a dust-filled Einstein universe, a remarkable feature emerges that

cannot be realized in general relativity: independent of the spatial curvature, area metric

cosmology explains the observed small late-time acceleration of our Universe [1, 2]. This

effect is a consequence of area geometry; it does not invoke a cosmological constant nor

additional quintessence fields, see e.g. [59 – 61]. Neither does this result depend on fine-

tuning, since one of the nice features is that the acceleration automatically tends to zero

with time.

So the idea of spacetime as an area metric manifold can be taken very far indeed, has a

common conceptual basis in the structure of string and gauge theory, and provides a very

encouraging first cosmological prediction, too. But, as can be expected from any novel

theoretical framework, a number of open ends remains to be addressed.

The most pressing one from a phenomenological point of view is whether area metric

gravity passes solar system tests. This question is certainly solvable, but complicated by the

fact that a spherically symmetric area metric is generically not almost metric, but contains

one further scalar degree of freedom. While we have shown that every vacuum solution of

Einstein gravity, i.e., in particular the Schwarzschild solution, induces a vacuum solution

of area metric gravity, it is not clear whether this vacuum solution consistently extends to

a solution with matter — having learnt that the inclusion of matter may require deviations

from metric geometry. In the metric case life is simpler because of Birkhoff’s theorem.

Another such physical issue is the discussion of fermions, which might be introduced by

their Dirac algebra with respect to the effective metric.

On the mathematical side, a precise understanding of the degrees of freedom united

in the area metric is needed. This includes in particular the connection to string theory,

where true area metrics emerge as combinations of a metric and a two-form potential.

This problem is likely related to the question of possible relations between area metric

geometry and generalized geometries emerging in string theory, such as generalized complex

geometry [20, 21] or T-folds [22, 23]. If one ventures to consider an area metric spacetime

structure as a geometrization of the string idea, which we feel is structurally quite natural,

one ultimately has to find out how to quantize strings on an area metric background;

given that the trace anomaly in quantized string theory is determined essentially by the

two-dimensional worldsheet curvature [62] and that the area metric curvature vanishes in

two-dimensions, one may for instance speculate that a successful string quantization based

on area metric geometry modifies the standard no-ghost theorems [62 – 64]. A detailed
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investigation of these issues is of course needed, and remains the subject of future work.
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A. Conventions

In this appendix we lay down our conventions for the coordinate representations of objects

and operations. Let M be a d-dimensional smooth manifold and {ea} a basis of TM . This

basis canonically induces the basis

{ea1 ∧ · · · ∧ eak
| a1 < · · · < ak} (A.1)

of
∧k TM which is of dimension

(

d
k

)

. Any section Ω of
∧k TM can be expanded in this

basis in the following form,

Ω = Ωa1...akea1 ∧ · · · ∧ eak
=

1

k!
Ωab...ea ∧ eb ∧ . . . , (A.2)

which defines the components of Ω. Note that we adhere to the convention that sums over

numbered indices a1 . . . ak, only on totally anti -symmetric objects, are ordered sums over

a1 < · · · < ak. As an immediate consequence of this convention we find the components of

exterior products of sections Ω ∈ ∧k TM and Σ ∈ ∧l TM :

(Ω ∧ Σ)ab... =
(

k+l
k

)

Ω[ab...Σ... ] . (A.3)

A basis {εa} of T ∗M induces the canonical basis {εa1 ∧ · · ·∧ εak | a1 < · · · < ak} of
∧k T ∗M

which is dual to (A.1) if {εa} is dual to {ea}, in which case

εa1 ∧ · · · ∧ εak(eb1 ∧ · · · ∧ ebk
) = k!δ

[a1

[b1
. . . δ

ak ]
bk ] , (A.4)

where the right hand side are precisely the components of the identity on
∧k TM . We also

define contraction symbols for Ω ∈ ∧k+1 TM and ω ∈ ∧l+1 T ∗M :

Ω xω = 1
k+1

1
l+1 Ωa1...akpωpb1...bl

ea1 ∧ · · · ∧ eak
⊗ εb1 ∧ · · · ∧ εbk , (A.5a)

ω yΩ = (−1)k+l Ω xω . (A.5b)

For k-forms Σ ∈ ∧k T ∗M we define the exterior derivative such that

dΣ = (k + 1)∂[a1
Σa2...ak+1]ε

a1 ∧ · · · ∧ εak+1 . (A.6)
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B. Field equations of area metric gravity

This appendix contains full technical detail of the derivation of the equations of motion of

area metric gravity in four dimensions. These are obtained from variation, with respect to

the inverse area metric, of the action Sgrav proposed in (9.1) in section 9.

This action contains, through the area metric curvature tensor (7.8), covariant deriva-

tives of the X-tensors, which we remove by partial integration. For this purpose note that

covariant derivatives involving the tangent bundle connection ∇LC integrated over the area

manifold are no longer surface terms, since the area metric is not covariantly constant under

this connection. Instead the following formula holds for partial integration:

∫

M
ωG ∇LC

p Ap = − 1

2(d − 1)

∫

M
ωG XpA

p , (B.1)

where Xp = Xab
abp. Using this result we obtain the four-dimensional action in the alter-

native form

κS̃grav =

∫

M
ωG

(

R(gG) +
1

4
gmn
G Dcdfijk

mnabpqX
ab

cdfXpq
ijk

)

=

∫

M
ωG L̃(G) , (B.2)

which is classically equivalent to the original action on manifolds without boundary. As a

shorthand we have used the definition

Dcdfijk
mnabpq =

1

2

(

1

3
δcdfijk
abnpmq −

1

3
δcdfijk
abqpmn + δcdfijk

pmnabq − δcdfijk
pmqabn +

(

cdf
abm ↔ ijk

pqn

)

)

(B.3)

in contracting the X-tensors, where deltas with multiple indices simply denote products of

single deltas, e.g. δab
cd = δa

c δb
d. We proceed to vary the action (B.2) with respect to the area

metric, which is determined by its decomposition into the irreducible algebraic curvature

tensor C and the scalar φ as in (5.5). The calculation is not difficult, but rather long, and

will be presented in several steps.

We begin with a variation with respect to the effective metric gG, which of course still

depends both on C, via the Fresnel tensor, and on φ via the chosen natural section dφ of the

cotangent bundle. The dependence on the effective metric in all covariant derivatives ∇LC ,

also in the tensors X, has to be taken account. Variation of the Levi-Civita connection

and of the corresponding Riemann curvature tensor with respect to a given metric are

standard. We explicitly provide these variations with respect to the inverse metric. Then,

for connection and curvature

δg−1
G

Γt
vk = −1

2
gtu
G gG yαgG zβD̃xyz

kvu∇LC
x δgαβ

G , (B.4a)

δg−1
G

Rmn = −1

2
gtu
G gG yαgG zβ

(

D̃xyz
nmuδw

t − D̃xyz
tmuδw

n

)

∇LC
w ∇LC

x δgαβ
G , (B.4b)

where we use another notational shorthand,

D̃xyz
kvu = δxyz

kvu + δxyz
vku − δxyz

uvk . (B.5)
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The same remark as above applies for deltas with multiple indices. The variation of the

X-tensor with respect to the effective metric follows as

δg−1
G

Xpq
ijk = gtu

G gG yαgG zβ

(

1

4
D̃xyz

kvuGpqvwGtwij + D̃xyz
k[i|uδ

[pq]
t|j]

)

∇LC
x δgαβ

G . (B.6)

Employing these relations and performing all necessary partial integrations one hence ob-

tains the expression

δg−1
G

(κS̃grav) =

∫

M
ωG δgαβ

G VgG αβ ,

VgG αβ = R(gG)αβ +
1

4
Dcdfijk

αβabpqX
ab

cdfXpq
ijk −

1

2
gmn
G gtu

G gG yαgG zβDcdfijk
mnabpq ×

×
(

∇LC
x +

1

6
Xx

)(

Xab
cdf

(

1

4
D̃xyz

kvuGpqvwGtwij + D̃xyz
k[i|uδ

[pq]
t|j]

))

− 1

6

(

δxw
αβ − gxw

G gG αβ

)

(

∇LC
x Xw +

1

6
XxXw

)

. (B.7)

Our second step is the variation of the action with respect to all explicitly occurring

area metrics; these appear in the volume form, and also in the X-tensors. Explicitly we

have

δG−1ωG = − ωG

8(d − 1)
GαβγδδG

αβγδ , (B.8a)

δG−1Xpq
ijk = −1

4
Gijγδ

(

Xpq
αβkδG

αβγδ + δpq
αβ∇LC

k δGαβγδ
)

. (B.8b)

Application of these two identities finally yields the expression

δG−1(κS̃grav) =

∫

M
ωG δGαβγδVG αβγδ ,

VG αβγδ = − 1

24
GαβγδL̃(G) − 1

8
gmn
G Dcdfijk

mnabpqX
ab

cdfXpq
αβkGijγδ

+
1

8
gmn
G Dcdfijk

mnabαβ

(

∇LC
k +

1

6
Xk

)

(

Xab
cdfGijγδ

)

. (B.9)

In order to obtain the full variation of the action, we last but not least have to consider

the dependence of the effective metric and of the area metric itself on the irreducible parts C

and φ of the area metric, and then to combine all terms. For the area metric we find

δGijkl = δCijkl +
1

24
φωijkl

C C−1
αβγδδC

αβγδ + ωijkl
C δφ . (B.10)

The expressions for the effective metric are more elaborate. In our mainly plus signature

convention these are given by

δφgαβ
G = 6

(

2h−5GαGβGγ − 3h−3G(αβGγ) + h−1Gαβγ
)

∇LC
γ δφ (B.11)
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and

δCgab
G =

(

− 3h−5(∂φ)4ijklGaGb+
3

2
h−3(∂φ)4ijklGab+4h−3δ

(a
(i (∂φ)3jkl)Gb)−3h−1δa

(iδ
b
j(∂φ)2kl)

)

×

×
(

GijklC−1
αβγδ+ωC mnpβωC rsγδC

mnriCjpskδl
α+

1

2
ωC mnβqωC rγtuCmnriC lqtuδj

αδk
δ

)

×

×
(

1

12
δCαβγδ

)

, (B.12)

where the characteristic function h evaluated on the section dφ, see (4.1), appears. We also

use the abbreviations Gαβγ = Gαβγd∂dφ, Gαβ = Gαβcd(∂φ)2cd and Gα = Gαbcd(∂φ)3bcd.

The final result for the combined terms resulting from the total variation of the action

S̃grav may now be written in the simple form

δ(κS̃grav) =

∫

M
ωG

(

δφKφ + δCαβγδKC
αβγδ

)

. (B.13)

Note that in reaching this result another partial integration has to be performed on the

terms arising from the variation δφgG. The final result for Kφ is then given by the expression

Kφ =−
(

∇LC
γ +

1

6
Xγ

)

(

6VgGαβ

(

2h−5GαGβGγ − 3h−3G(αβGγ)+h−1Gαβγ
))

+ωαβγδ
C VG αβγδ .

(B.14)

The almost final result for KC is given by the following expression K̃C which, however,

does not yet have the correct symmetry structure:

K̃C
αβγδ =

(

−3h−5(∂φ)4ijklGaGb+
3

2
h−3(∂φ)4ijklGab+4h−3δ

(a
(i (∂φ)3jkl)Gb)−3h−1δa

(iδ
b
j(∂φ)2kl)

)

×

×
(

GijklC−1
αβγδ+ωC mnpβωC rsγδC

mnriCjpskδl
α+

1

2
ωC mnβqωC rγtuCmnriC lqtuδj

αδk
δ

)

×

×
(

1

12
VgG ab

)

+ VG αβγδ +
1

24
φVG ijklω

ijkl
C C−1

αβγδ . (B.15)

To obtain the correct KC note that this term must have the symmetries of an algebraic

curvature tensor since these symmetries are imposed by its contraction with δC in equa-

tion (B.13). To correct procedure thus is to project onto this irreducible representation by

removing the totally antisymmetric part:

KC
ijkl = K̃C

ijkl +
1

24
ωαβγδ

C K̃C
αβγδωC ijkl . (B.16)

The positive sign between both terms is a consequence of the Lorentzian signature.

Finally, we arrive at the vacuum gravity equations for four-dimensional area metric

manifolds. Vanishing variation δS̃grav = 0 with respect to the inverse area metric implies

the following two equations, corresponding to its cyclic and totally antisymmetric parts,

respectively:

KC
ijkl = 0 and Kφ = 0 . (B.17)
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C. Simplification for almost metric area metrics

In section 10 we have discussed almost metric area metrics G−1 = (Gφ
g )−1, which are deter-

mined by a metric and scalar field, as those closest to standard Lorentzian manifolds. For

this rather simple case occurs a significant simplification of the four-dimensional equations

of motion that have been derived in detail in the preceding section. We will now present

this simplification in some more detail as a basis for our discussion of area metric cosmology

in the main text.

Essentially because of the simple form (3.6) of the Fresnel tensor in the almost metric

case, we find that the inner bracket in the φ-variation, see Kφ in (B.14), is identically zero,

and hence its derivative is. Hence

Kφ = ω̄ijkl
g VGijkl . (C.1)

In vacuo this expression must vanish by equation (B.17), which simply requires that VG

should be an algebraic curvature tensor.

A similarly drastic simplification occurs for the variation with respect to C. We expand

all terms that multiply VgG ab in equation (B.15), while at the same time imposing the

algebraic curvature tensor symmetries on the indices αβγδ. This results in

− 1

12
gab
G gGα[γgG δ]β +

1

2
δ
(ab)
α[γ gG δ]β . (C.2)

The simplified form of the C-equation then follows as

KC
αβγδ = − 1

12
gab
G VgG abgG α[γgG δ]β +

1

2
VgG [α[γgG δ]β]

+
1

12
φKφgG α[γgG δ]β + VGαβγδ +

1

24
Kφωαβγδ . (C.3)

The antisymmetrization in the second term is supposed to act only on the index pairs [αβ]

and [γδ]. This equation indeed has the symmetries of an algebraic curvature tensor; this

is ensured by the addition of the last term which removes the totally antisymmetric part

of VG.

The inverse Gφ
g of (Gφ

g )−1 has already been displayed in (5.10). This expression im-

mediately enables us to calculate the X-tensor as

Xab
cdf = − ∂fφ

1 + φ2

(

1

2
ωab

cd + φδ
[ab]
cd

)

. (C.4)

We now have all the information needed to further simplify the above expressions for Kφ

and KC in the almost metric case. For the φ-variation we simply find

Kφ = − φ

1 + φ2
R . (C.5)

The C-variation KC which is a rank four tensor turns out to conform to a very partic-

ular structure. It is in fact induced from a symmetric rank two tensor S as shown in

equation (10.1), where

4Sab =Rab−
1

3
Rgab+

1−2φ2

(1+φ2)2

(

∂aφ∂bφ−
1

2
gab(∂φ)2

)

+
φ

1+φ2

(

∇a∂bφ−
1

2
gab¤φ

)

. (C.6)

Our main application of these expressions in this paper is to area metric cosmology.
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